How Much is it Worth For AI systems

Practical AI Roadmap Workbook for Business Executives


Image

A simple, practical workbook showing the real areas where AI adds value — and where it doesn’t.
The Dev Guys – Mumbai — Think deeply. Build simply. Ship fast.

Why This Workbook Exists


In today’s business world, leaders are often told they must have an AI strategy. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Declining AI entirely because of confusion or doubt.

This workbook offers a balanced third option: a calm, realistic way to identify where AI truly fits in your business — and where it doesn’t.

You don’t need to understand AI models or algorithms — just your workflows, data, and decisions. AI should serve your systems, not the other way around.

Using This Workbook Effectively


You can complete this alone or with your management team. The aim isn’t to finish quickly but to think clearly. By the end, you’ll have:
• Clear AI ideas that truly affect your P&L.
• Recognition of where AI adds no value — and that’s okay.
• A realistic, step-by-step project plan.

Use it for insight, not just as a template. If your CFO can understand it in a minute, you’re doing it right.

AI planning is business thinking without the jargon.

Starting Point: Business Objectives


Start With Outcomes, Not Algorithms


Too often, leaders ask about tools instead of outcomes — that’s the wrong start. Non-technical leaders should start from business outcomes instead.

Ask:
• Which few outcomes will define success this year?
• Where are mistakes common or workloads heavy?
• Which processes are slowed by scattered information?

AI is valuable only when it moves key metrics — revenue, margins, time, or risk. Ideas without measurable outcomes belong in the experiment bucket.

Start here, and you’ll invest in leverage — not novelty.

Understand How Work Actually Happens


Understand the Flow Before Applying AI


AI fits only once you understand the real workflow. Simply document every step from beginning to end.

Examples include:
• New lead arrives ? assigned ? nurtured ? quoted ? revised ? finalised.
• Customer issue logged ? categorised ? responded ? closed.
• Invoice generated ? sent ? reminded ? paid.

Every process involves what comes in, what’s done, and what moves forward. AI belongs where the data is chaotic, the task is repetitive, and the result is measurable.

Step 3 — Prioritise


Assess Opportunities with a Clear Framework


Evaluate AI ideas using a simple impact vs effort grid.

Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Big strategic initiatives take time but deliver scale.
• Nice-to-Haves — low impact, low effort.
• Delay ideas that drain resources without impact.

Consider risk: some actions are reversible, others are not.

Begin with low-risk, high-impact projects that build confidence.

Laying Strong Foundations


Data Quality Before AI Quality


Messy data ruins good AI; fix the base first. Clarity first, automation later.

Design Human-in-the-Loop by Default


AI should draft, suggest, or monitor — not act blindly. Build confidence before full automation.

Common Traps


Steer Clear of Predictable Failures


01. The Demo Illusion — excitement without strategy.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Full Automation Fantasy — imagining instant department replacement.

Define ownership, success, and rollout paths early.

Partnering with Vendors and Developers


Your role MVP Rescue is to define the problem clearly, not design the model. State outcomes clearly — e.g., “reduce response time 40%”. Share messy data and edge cases so tech partners understand reality. Clarify success early and plan stepwise rollouts.

Transparency about failures reveals true expertise.

Signs of a Strong AI Roadmap


How to Know Your AI Strategy Works


It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.

Essential Pre-Launch AI Questions


Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Do we have data and process clarity?
• Where will humans remain in control?
• What is the 3-month metric?
• What’s the fallback insight?

Conclusion


Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. When AI becomes part of your workflow quietly, it stops being hype — it becomes infrastructure.

Leave a Reply

Your email address will not be published. Required fields are marked *